Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2.

نویسندگان

  • Y Cho
  • W Choi
  • C H Lee
  • T Hyeon
  • H I Lee
چکیده

This study investigated an application of TiO2 photocatalyst sensitized with tris(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium-(II) complex to CCl4 degradation under visible light irradiation. By injecting electrons from the photoexcited sensitizer to the conduction band, the sensitized TiO2 degraded CCl4 under the irradiation of lambda > 420 nm. The quantum yield of CCl4 dechlorination was about 10(-3). The dechlorination rate of CCl4 was reduced in the presence of dissolved O2 due to its competition for conduction band electrons. The photolysis rate was dependent on pH due to the strong pH dependence of the sensitizer adsorption on TiO2 surface with a maximum degradation rate achieved at pH approximately 3. A two-site Langmurian model successfully described the adsorption of the sensitizer on TiO2 particles. The monolayer coverage was achieved at the added sensitizer concentration of 10 microM at [TiO2] = 0.5 g/L. However, the photolysis rate of CCl4 showed a maximum at a sensitizer surface coverage of 0.3 monolayer. Since the photoinduced electron injection gradually depleted active sensitizer molecules on TiO2, sacrificial electron donors to regenerate the sensitizer were sought. 2-Propanol as an electron donor was efficient in the present RuIIL3/TiO2/CCl4 system, which showed no sign of deceleration in the dechlorination rate up to 6 h of irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

متن کامل

Comparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light

The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...

متن کامل

Immobilization of cobalt doped rutile TiO2 on carbon nanotubes walls for efficient photodegradation of 2,4-dichlorophenol under visible light

In this work, we focused on improvement of rutile-type TiO2 degradation efficiency by cobalt doping and decorating on carbon nanotubes walls (CNTs) (Co-TiO2/CNTs). We also synthesized pure TiO2, Co-TiO2 and TiO2/CNTs samples for control experiments. The textural and morphology features of the samples were characterized by a range of analyses including: XRD, FESEM/EDX. FTIR, TEM, UV-Vis DRS and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2001